

The Effect of Agriculture on Methane Oxidation in Soil [and Discussion]

K. W. T. Goulding, B. W. Hutsch, C. P. Webster, T. W. Willison, D. S. Powlson, R. S. Clymo, K. A. Smith and M. G. R. Cannell

Phil. Trans. R. Soc. Lond. A 1995 **351**, 313-325 doi: 10.1098/rsta.1995.0036

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click here

To subscribe to *Phil. Trans. R. Soc. Lond. A* go to: http://rsta.royalsocietypublishing.org/subscriptions

PHILOSOPHICAL TRANSACTIONS

The effect of agriculture on methane oxidation in soil

BY K. W. T. GOULDING¹, B. W. HÜTSCH², C. P. WEBSTER¹, T. W. WILLISON¹ AND D. S. POWLSON¹

¹Soil Science Department, Institute of Arable Crops Research, Rothamsted Experimental Station, Harpenden, Herts AL5 2JQ, U.K. ²Institute for Plant Nutrition, Justus-Liebig-University, Südanlage 6, 35390 Giessen, Germany

Aerobic soils are an important sink for methane (CH_4) , contributing up to 15% of global CH_4 destruction. However, the sink strength is significantly affected by land management, nitrogen (N) fertilizers and acidity. We tested these effects on samples taken from the Broadbalk Continuous Wheat, Park Grass permanent grassland and Broadbalk and Geescroft Wilderness Experiments at Rothamsted. The rates of uptake from the atmosphere of both enhanced (10 ppmv) and ambient (2 ppmv) concentrations of CH_4 were measured in laboratory incubations of soil cores under controlled conditions.

The most rapid rates of uptake were measured in soil from deciduous woodland at pH 7 (measured in water); acidic (pH 4) woodland soil showed no net CH₄ oxidation. While disturbance of the cores used in the experiments did not affect the rate of CH₄ uptake, extended (150 years) cultivation of land for arable crops reduced uptake rate by 85% compared to that in the soil under calcareous woodland. The long-term application of ammonium (NH₄)-based fertilizer, but not nitrate (NO₃)-based fertilizer, completely inhibited CH₄ uptake, but the application for the same period of farmyard manure that contained more N than the fertilizer had no inhibitory effect.

Autoclaving showed that the uptake of CH_4 was microbially mediated. The most likely causes of the inhibitory effects seen are (i) insufficient concentrations of CH_4 in situ to activate methane monooxygenase; (ii) the direct inhibition of CH_4 oxidation by NH_4^+ ions as the methanotrophs become adapted to oxidizing NH_4^+ ions; (iii) the suppression of methanotrophs by NH_4 -based fertilizers and acidity; (iv) the requirement of methanotrophs for a stable soil architecture which is incompatible with the disturbance caused by regular arable cultivation. These explanations are not mutually exclusive; several may operate concurrently.

1. Introduction

Methane (CH₄) is a radiatively active (greenhouse) gas. The WMO/UNEP (1990) estimated that CH₄ contributed 15% of the change in radiative forcing that occurred between 1980 and 1990. Its current global average atmospheric concentration is 1.72 ppmv (parts per million by volume). For several decades the concentration was increasing rapidly by *ca.* 20 ppbv a^{-1} (about 1% per year),

 Phil. Trans. R. Soc. Lond. A (1995) 351, 313–325

 Printed in Great Britain
 313

 \odot 1995 The Royal Society $T_{\rm E} X {\rm \ Paper}$

K. W. T. Goulding and others

but the rate of increase has declined markedly in the last few years to about 10 ppbv a^{-1} (Dlugokencky *et al.* 1994) for reasons that are not yet clear. The causes of the increase are not well identified either, but are thought to include increased production from ruminants and paddy rice cultivation and the exploitation of natural CH₄ deposits. There are also suggestions that the natural sinks may have decreased in strength.

The soil is an important source of CH_4 when under anaerobic conditions, such as in natural wetlands or flooded rice but aerobic soil is an important sink where CH_4 is oxidized to CO_2 or assimilated into the microbial biomass. Oxidation is environmentally beneficial because each molecule of CH_4 is 21 times more radiatively active than one of CO_2 (WMO/UNEP 1990). Estimates of the total sink strength of the soil vary between 10% (Duxbury & Mosier 1993) and 15% (Born *et al.* 1990) of global CH_4 destruction. Methane uptake has been observed in tropical soils (Seiler *et al.* 1984), peat soils (Yavitt *et al.* 1990), temperate forest soils (Steudler *et al.* 1989; Born *et al.* 1990), grasslands (Mosier *et al.* 1991) and desert soils (Striegl *et al.* 1992).

Net CH_4 flux is determined by the balance between production and consumption. Both may occur in some units of soil, e.g. production in an anaerobic zone below the water table or in a microsite, and consumption in an aerobic (surface) layer. Much of the CH_4 generated in soil is oxidized before it reaches the atmosphere. Galchenko *et al.* (1989) estimated that 39–92%, 78–95% and 60–90% of the CH_4 produced in rice paddy, swamps and lakes, and seas, respectively, was oxidized in aerobic layers before the CH_4 could escape to the atmosphere.

Recent measurements of CH_4 uptake by predominantly aerobic soil have shown significant variations that appear to be caused by land management and nitrogen (N) deposition from the atmosphere (for the latter see Melillo *et al.* 1989). Nesbit & Breitenbeck (1992) found that cultivated soils took up CH_4 when exposed to large concentrations (greater than 1000 ppmv), but not when exposed to ambient concentrations. Dobbie & Smith (1994) found that forest soils took up CH_4 , on average, at three to four times the rate at which it was taken up by agricultural soils. Mosier & Schimel (1991) and Mosier et al. (1991) reported that arable soil absorbed less CH_4 than pasture, and that the application of N fertilizer and irrigation reduced the rate of uptake further. An annual application of fertilizer equivalent to only 22 kg N ha⁻¹ a⁻¹ for 15 years as ammonium nitrate (NH_4NO_3) reduced CH_4 uptake by 41% compared with adjoining unfertilized pasture; table 1 summarizes the results. Bronsen & Mosier (1994) found that ammonium chloride, and also the nitrification inhibitor nitrapyrin and the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT), had similar inhibitory effects. In addition Steudler *et al.* (1989) measured a reduction of CH_4 uptake by temperate forest soil when a total of 37 or $120 \text{ kg N} \text{ ha}^{-1}$ was applied in six equal monthly doses; the effect increased between the fourth and sixth doses, indicating a cumulative effect of N. These changes are significant because, without the soil sink for CH_4 , the atmospheric concentration would be increasing at 1.5 times the current rate (Duxbury & Mosier 1993; Ojima et al. 1993).

Research to date has found it difficult to separate the effects on CH_4 uptake of land use (arable, pasture, woodland), N rate and form, and soil acidity (which results from the application of NH_4 -based fertilizers unless soil is limed). The Classical Experiments at Rothamsted Experimental Station, begun in the 1840s and 1850s, compare the effects of NH_4 - and NO_3 -based fertilizers on the growth

Phil. Trans. R. Soc. Lond. A (1995)

315

land use	methane oxidation $(mg CH_4 m^{-2} d^{-1})$	
pasture:		
fertilized	0.55	
unfertilized	0.84	
wheat (unfertilized)	0.20	
irrigated wheat:		
$\operatorname{control}$	0.11	
+ urea	0.12	

Table 1. Effects of land use and nitrogen fertilizer on methane oxidation by soil (Adapted from Mosier & Schimel (1991).)

of permanent grassland and arable crops, and examine the natural regeneration of woodland over 100 years on neutral soil buffered with lime or unbuffered soil that is now very acid. These unique experiments are being used to unravel the complex interactions between land use and fluxes of trace gases, initially CH_4 .

2. Experimental methods used in trace gas flux studies

Soil is a heterogeneous material. Its physical, chemical and, especially biological properties vary spatially and temporally. Because of this, measuring and understanding elemental cycling processes such as CH_4 uptake is complex and tedious, requiring large samples and/or many replicates if large errors are to be avoided. While measurements integrated over a large scale are required for best estimates of fluxes over landscapes, the elucidation of processes and the factors controlling them require rigorously controlled studies. Techniques have therefore centred on cover boxes in the field or the incubation of small cores of soil in the laboratory; Mosier (1989) made a useful review of these small-scale techniques. Some of the techniques used in the field are now very sophisticated: Butterbach-Bahl *et al.* (1994) described the continuous (five samples per hour) measurement of fluxes of CH_4 , NO, N₂O and NO₂ in a forest in Bavaria and the correlation of these fluxes to meteorological events, and Hargreaves *et al.* (1994) reported the use of a tuneable diode laser system to measure CH_4 fluxes from peatlands.

Studies at Rothamsted have utilized the incubation of small cores in the laboratory. This facilitated the control of environmental conditions (temperature and moisture), the manipulation of factors such as applications of fresh N fertilizer, and the minimizing of errors to enable the detection of differences in CH_4 uptake with a manageable number of soil cores. Full details of experimental methods were given by Hütsch *et al.* (1993, 1994).

The measurement of CH_4 uptake from ambient concentrations is not easy, so early work at Rothamsted used enhanced concentrations of *ca.* 10 ppmv to aid detection. All early measurements made with enhanced concentrations have now been repeated at ambient concentrations; rates of uptake are not significantly different, so the uptake at 10 ppmv is not an artefact of adding extra CH_4 . For the work with enhanced concentrations of CH_4 , usually four replicate cores were used, with two gas samples analysed at each sampling time from each core; eight

Phil. Trans. R. Soc. Lond. A (1995)

K. W. T. Goulding and others

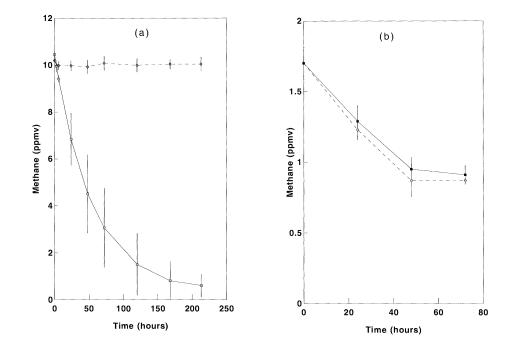


Figure 1. Effects of (a) autoclaving and (b) physical disturbance on the oxidation of CH₄ by soil. (a) $-\Box$, without autoclaving; $-\Diamond$, with autoclaving. (b) $-\blacksquare$, intact core; $-\Diamond$, broken core.

replicate cores were used for woodland soil because of its expected greater spatial variability. For the later work with ambient concentrations of CH_4 , eight replicate cores were always used.

Autoclaving of cores was used to confirm that the uptake of CH_4 was biologically mediated. Cores were autoclaved at 123 °C (30 min sterilizing time, 10 min purge time) and then CH_4 uptake and carbon dioxide (CO_2) production measured; the physical structure of the cores remained intact; no water was lost. Figure 1*a* shows the result of one of these experiments. Clearly no CH_4 was taken up by the soil after autoclaving, establishing that the process is biological. However, the physical integrity of soil cores can be very important in biologically mediated reactions, especially where diffusion rates and gas gradients are involved. Further tests were therefore made on this effect. Figure 1*b* shows CH_4 uptake by intact and roughly broken cores; there is no significant difference between them, indicating that breaking/disrupting cores does not produce artefacts in CH_4 uptake.

3. Results

(a) Effects of land use and management

Figure 2 shows the uptake of CH_4 by soil under arable land (Broadbalk Continuous Wheat), cut grass (Park Grass) and grazed grass (Broadbalk Wilderness, grazed section) and woodland (Broadbalk Wilderness, wooded section); the soils

Phil. Trans. R. Soc. Lond. A (1995)

HEMATICAL, ICAL GINEERING

ROYAI

THEI

PHILOSOPHICAL TRANSACTIONS

GINEERING

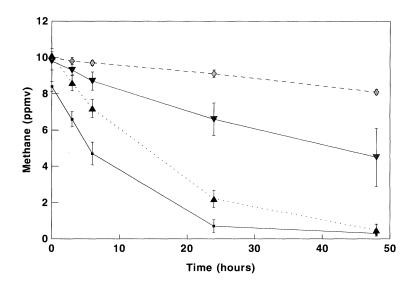


Figure 2. Effect of land use on the oxidation of CH_4 by soil. Data from the Broadbalk Continuous Wheat, Broadbalk Wilderness (woodland and grazed grass), and Park Grass Permanent (cut) Grass Experiments at Rothamsted Experimental Station. In no case was N fertilizer applied. $-\blacksquare$, woodland; $\cdots \land \cdots$, cut grass; $-\blacksquare$, grazed grass; $-\diamondsuit$, arable.

have pH values between 5.9 (grazed Wilderness) and 7.5 (Broadbalk arable) and receive no N other than from the atmosphere, or from animal returns in the case of the grazed grass; atmospheric inputs total 40–50 kg ha⁻¹ a⁻¹ to arable and grassland, perhaps 60–70 kg ha⁻¹ a⁻¹ to woodland (Goulding 1990). The effect of cultivation is immediately apparent. Growing grass cut for hay caused only a small reduction in the rate of uptake of CH₄ over that in undisturbed woodland soil, but 150 years of arable cultivation has caused an 80% reduction in the rate of CH₄ uptake. This has to be compared with the result of figure 1*b*, which shows that simply disturbing or breaking soil does not immediately reduce the rate of CH₄ uptake. The soil under the grazed grass absorbs CH₄ at a much slower rate than that under the cut grass. This may be due to an effect of N excreted from the sheep as urine and faeces, which contains much NH₄–N (see below).

(b) Effect of nitrogen fertilizer

The Broadbalk Experiment permits the truly long-term effects of fertilizer on environmental emissions to be assessed. All plots are at pH 7.5 and are managed in exactly the same way, except for fertilizer applications. All have grown winter wheat, with conventional cultivation, every year since 1843 except for the period from 1926 to 1967 when they were fallowed one year in every five to control weeds. Figure 3 shows that the continued application for 150 years of 144 kg ha⁻¹ N fertilizer has significantly reduced CH_4 uptake by about 50% compared with soil receiving no fertilizer; the reduction increases with the amount of fertilizer applied (Hütsch *et al.* 1993).

The effects we observed appear to be caused by NH_4^+ rather than by inorganic N because we found no effect of NO_3^- . Figure 4 shows uptake rates of CH_4 by soil from plots of the Park Grass Experiment that are at pH 6.1–6.3 and receive

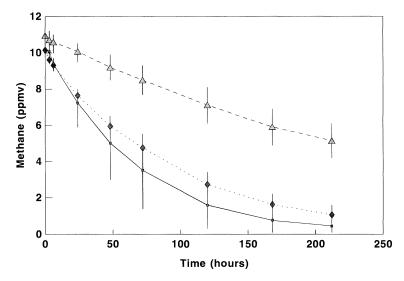


Figure 3. Effect of long-term applications of fertilizer and farmyard manure on the oxidation of CH₄ by soil. Data from the Broadbalk Continuous Wheat Experiment at Rothamsted. Fertilizer applied as ammonium sulphate from 1843 to 1968; thereafter as ammonium nitrate. Farmyard manure contains *ca.* 240 kg N ha⁻¹. All plots at *ca.* pH 7.5. —□—, Farmyard manure; $\cdots \phi \cdots$, no fertilizer; $- \bigtriangleup - -$, 144 kg N ha⁻¹.

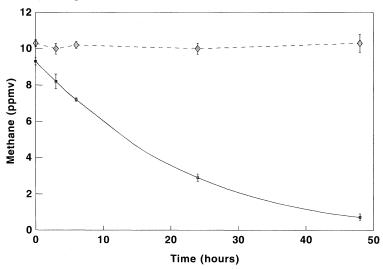


Figure 4. A comparison of the effects of ammonium-based and nitrate-based fertilizer on the oxidation of CH₄ by soil. Data from the Park Grass Experiment at Rothamsted. Plot 9/2 a $(-\diamond -)$ has received 96 kg N ha⁻¹ annually as ammonium sulphate since 1856; Plot 14/2 a $(-\Box -)$ has received 96 kg N ha⁻¹ annually as sodium nitrate since 1856.

96 kg N ha⁻¹ a⁻¹, but Plot 14/2 receives NaNO₃ and Plot 9/2 (NH₄)₂SO₄. There is no uptake of CH₄ by the soil that has received NH₄–N for 140 years, whereas CH₄ uptake in the NO₃-treated plot is the same as that on an unfertilized plot at the same pH. The form of the N applied therefore has a significant effect on CH₄

Phil. Trans. R. Soc. Lond. A (1995)

HEMATICAL, Sical Igineering

ROYAI

THE

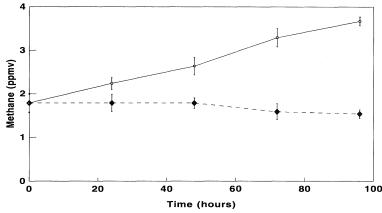


Figure 5. The immediate effect on CH_4 oxidation in soil of applying water or a solution of NH_4^+ ions; the data suggest rapid inhibition of CH_4 oxidation and the simultaneous production and consumption of CH_4 (see text). Soil taken from the farmyard manure plot on the Broadbalk Continuous Wheat Experiment at Rothamsted. $\Box\Box$, with ammonium–N added; $-\phi$ –, with water added.

metabolism. Some other research supports the idea that only NH_4^+ inhibits CH_4 oxidation. For example, Nesbit & Breitenbeck (1992) found that an addition of NH_4 –N to a culture of methanotrophs (7 µmol g⁻¹, ca. 340 kg N ha⁻¹ to the topsoil to 23 cm) inhibited CH_4 uptake, but the same application of NO₃–N increased CH_4 uptake. However, much larger applications of NO₃–N (ca. 1700 kg N ha⁻¹) reduced CH_4 uptake over that of controls, and Prieme (1994) also found an inhibitory effect of NO_3^- , so the exclusive inhibitory effect of NH_4^+ is by no means proven.

We have evidence, too, that NH_4-N has an immediate, is short-term, effect as well as a long-term effect, and that simultaneous production and consumption of CH_4 can occur: figure 5 shows no net change in CH_4 concentration in soil to which only water was added, but net CH_4 production in soil receiving the same volume of NH_4^+ solution. This can only be explained if the treatment with water alone was producing CH_4 at the same rate as the 'water + NH_4 ' treatment; the difference in observed CH_4 production rates occurred because the treatment receiving only water was also consuming CH_4 at about the same rate as it was being produced. The short-term suppression of CH_4 oxidation by NH_4^+ is in contradiction to the observations of Hütsch *et al.* (1993). This may be because they injected a small volume of NH_4^+ into intact cores and then incubated them, whereas we sieved and thoroughly mixed the soil with the NH_4^+ .

The continued application of 35 t farmyard manure ha⁻¹ a⁻¹ appears to have had no effect on CH₄ uptake (figure 3). This is despite the fact that the manure contains more N (240 kg N ha⁻¹ a⁻¹, much of which is in the NH₄⁺ form) than that applied as fertilizer. Possible reasons for the lack of effect are: (i) the manured plot has a much better structure that permits methanotrophs to survive despite the inhibitory effects of NH₄–N; (ii) the much larger microbial biomass (Jenkinson & Powlson 1976) and, perhaps, nitrifier population (but see Meiklejohn 1969) on the manured plot rapidly removes any NH₄⁺; (iii) a change in the ratio of nitrifiers to methanotrophs is less detrimental to CH₄ oxidation in

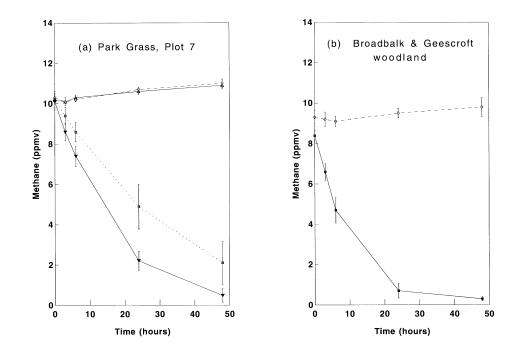


Figure 6. A comparison of the effects of soil pH on the oxidation of CH₄ by soil. Data from (a) the Park Grass Experiment at Rothamsted, and (b) the Broadbalk and Geescroft Wilderness (woodland) Experiments. Plot 7 of Park Grass receives no nitrogen fertilizer. (a) — \mathbf{V} —, Section A, pH 6.2; $\cdots \equiv \cdots$, Section B, pH 5.6; $-\diamond$ -, Section C, pH 5.1; $-\diamond$ —, Section D, pH 4.8. (b) — \mathbf{E} —, Broadbalk Wilderness, pH 7.5; $-\diamond$ -, Geescroft Wilderness, pH 4.1.

this soil because of the much greater total bacterial population; (iv) greater O_2 demand by the farmyard manure treatment during wet weather results in short periods of CH_4 production which stimulates methanotrophs; (v) NH_4^+ is released slowly from farmyard manure compared with the instantaneous addition of NH_4^+ from inorganic fertilizer.

(c) Effect of soil pH

The Park Grass experiment permits the comparison of the effects of a stable soil pH (the experiment began in 1856) on CH_4 uptake by soil without the complicating effects of fertilizer or management. Figure 6a shows CH_4 uptake by soil taken from the four sections of Plot 7 of the experiment. This plot receives no N fertilizer and its sections are limed for target pH values of 7, 6 and 5, with Section 'd' unlimed and allowed to reach equilibrium with atmospheric inputs. Acidity has a marked effect on CH_4 oxidation. A reduction in soil pH from 6.2 to 5.6 reduces uptake rate considerably, and at pH values below 5.1 no CH_4 is oxidized. In fact there is a slow production of CH_4 from the soil.

Figure 6b shows the effect of acidity on CH_4 uptake in a woodland soil. The neutral soil under Broadbalk Wilderness absorbs CH_4 rapidly; its rate of uptake is the fastest measured in any of the sites at Rothamsted. By contrast, the soil under Geescroft Wilderness that has acidified to pH 4.1 in the surface through inputs of acid deposition, emits rather than absorbs CH_4 .

Phil. Trans. R. Soc. Lond. A (1995)

GINEERING

royai

ΓΗΕ

The effects of acidity in these experiments could be indirect, caused by the build-up of organic material at the surface of the acid soils. The most acid sections of the Park Grass Experiment have a mat of undecomposed organic material, the thickness of which increases with the acidity, and Geescroft Wilderness has a surface layer of undecomposed leaf litter. This peat-like material could well be a net CH_4 producer. Alternatively, there may be a direct inhibiting effect of acidity on methanotrophs.

The inhibition of CH₄ uptake in acid soil is not always found. We have measured small but significant uptake rates of CH₄ in soil cores taken from a Norway spruce forest at pH 4.7 and there have been other reports of CH_4 uptake in acidic forest soils (Yavitt et al. 1993). We discuss the possible effects of soil acidity and their interaction with NH_4^+ below.

4. Discussion

The sink strength of soil for CH_4 is determined by the relative rates of production and oxidation. These are determined by the population and activity of three groups of bacteria: methanotrophs and nitrifiers, which can both mediate oxidation, and methanogens which are responsible for its formation. Methanotrophs are widely distributed in soil, and their numbers may be stimulated by large concentrations of CH_4 . Harriss *et al.* (1982) found that a swamp soil was particularly effective at oxidizing CH_4 after it had dried. Thus rapid CH_4 uptake may be the result of previous periods of CH_4 production.

There are at least four possible causes of the reductions in CH_4 uptake that we observed.

1. The enzymes that oxidize CH_4 , ammonia monooxygenase and methane monooxygenase, require a minimum (threshold) concentration of substrate to trigger activity. This concentration will vary between species but, generally, appears to be greater than ambient (Nesbit & Breitenbeck 1992). Thus the microbes in cultivated and therefore well-aerated soils, do not experience sufficient CH_4 production to trigger CH_4 oxidation. However, the greater oxygen demand of the farmyard manure plot on Broadbalk will increase the possibility of periods of CH_4 production during wet weather and thus of achieving sufficiently large CH_4 concentrations to trigger CH_4 oxidation.

2. Ammonia monooxygenase and methane monooxygenase can use either NH_4^+ or CH_4 as a substrate. Under certain circumstances, a prevalence of NH_4^+ may result in an adaptation of methanotrophs to favour oxidation of NH_4^+ .

3. Ammonium ions may suppress methanotrophs directly, or have an indirect effect through acidification of the rhizosphere, resulting from H^+ excretion by plant roots as NH_4^+ is taken up.

4. Physical, chemical and biological parameters define the ecological niche of individual species. Different land management practices may limit or prevent the formation of niches of one group, e.g. nitrifiers or methanotrophs.

The effect of NH_4^+ ions seems to be universal and without doubt. The effect of acidity varies, suggesting that it is not the acidity itself that affects methanotrophs but some other change that sometimes accompanies acidification; this could be the release of toxic ions such as aluminium. The effect of NH_4^+ could possibly be indirect, its uptake by plant roots leading to the excretion of H⁺ ions and acidification of the rhizosphere. However, most of our measurements of CH_4

Phil. Trans. R. Soc. Lond. A (1995)

MATHEMATICAL, PHYSICAL & ENGINEERING SCIENCES

ZT %

THE ROYAL SOCIETY

322

K. W. T. Goulding and others

Table 2.	Rates	of	oxidation	of	methane	measured	over	a	range o	f soils,	land	use	types	and
countries														

	methane oxic	nethane oxidation rate/(mg CH.			
source	arable	grassland	woodland		
Rothamsted, U.K.	$0\!-\!0.13$	0.00 - 0.19	0.00-0.24		
Mosier & Schimel (1991), U.S.A.	0.03 - 0.20	0.35 - 0.84	_		
Dobbie & Smith (1994) :					
U.K.	0.30 - 1.30	_	0.80 - 2.40		
Denmark	0.08 - 0.20	-	0.40 - 0.70		
Prieme (1994), Denmark	_	-	0.87 - 1.60		

oxidation have been made 9–12 months after the last N application. It seems unlikely that the localized effect of H^+ excretion will persist for this length of time. Also, for the Park Grass Experiment, most of the soil studied in the experiments is rhizosphere soil, the top 12 cm soil being full of grass roots. It seems unlikely that unmeasured acidification of the rhizosphere has occurred in this soil.

Table 2 compares rates of CH_4 oxidation measured in Rothamsted long-term experiments (this work and Hütsch *et al.* 1993, 1994) with rates measured over a range of countries, soils, land use types and managements, and using a range of sizes of cover boxes, micrometeorological techniques and tuneable diode lasers. The rates we observe are of the same order as those observed by other groups, but among the slowest. Our data would, therefore, seem representative of field rates. However, a true comparison of sites and factors requires standardized techniques and an understanding of the effects of factors that vary between sites, such as temperature and moisture. It is possible that rates of CH_4 oxidation are genuinely slower in south east England because of the long history of farming of agricultural land, and because of the large deposition of atmospheric N to woodland and forest. However, we may find faster rates of oxidation under certain conditions when we extend measurements through the year.

5. Conclusions

The way in which land is managed greatly influences the ability of soil to oxidize CH_4 . Thus land management will have an indirect impact on the build-up of CH_4 in the atmosphere as well as a direct effect in some situations (wetlands). It would be wrong merely to blame intensive agriculture as is so often done. Methane uptake is inhibited by all forms of agriculture, even 'rough' grazing, and probably by forestry through increased atmospheric N inputs and, perhaps, acidification.

The research suggests that NH_4^+ ions, and therefore NH_4 -based fertilizers, but not NO_3 -based fertilizers, inhibit CH_4 uptake by soil. The reasons for this are not yet clear, but involve the complex relationship between nitrifiers and methanotrophs, and possibly methanogens as well. Soil acidity is also an important factor in determining the rate of uptake of CH_4 , but the relationship is not simple: some acid soils rapidly oxidize CH_4 , others produce CH_4 . However, the factors that af-

fect CH_4 uptake also affect the production and consumption of other greenhouse gases by soil. One should not consider one gas in isolation when developing policy on land use and greenhouse gases.

The research is being funded by the Ministry of Agriculture, Fisheries and Food. B.W.H. thanks Deutsche Forschungsgemeinschaft for a scholarship to allow her to study at Rothamsted. The following also contributed to the research: Rachel Cook, Wendy Gregory, David Jenkinson, Penny Hirsch, Sile O'Flaherty, Paul Poulton, Gavin Ross and Alan Todd.

References

- Born, M., Dorr, H. & Levine, J. 1990 Methane consumption in aerated soils of the temperate zone. *Tellus* B 42, 2–8.
- Bronsen, K. F. & Mosier, A. R. 1994 Suppression of methane oxidation in aerobic soil by nitrogen fertilizers, nitrification inhibitors, and urease inhibitors. *Biol. Fert. Soils* 17, 263–268.
- Butterbach-Bahl, K., Gasche, R., Zumbusch, E. & Papen, H. 1994 Continuous automatic measurements of N₂O, NO, NO₂ and CH₄ flux rates in a nitrogen supersaturated temperate coniferous forest in Bavaria. Ann. Geophys. 12 (Supp. II), 388.
- Dlugokencky, E. J., Masaire, K. A., Lang, P. M., Tans, P. P., Steele, L. P. & Nisbet, E. G. 1994 A dramatic decrease in the growth rate of atmospheric methane in the Northern Hemisphere during 1992. *Geophys. Res. Lett.* 21, 45–48.
- Dobbie, K. E. & Smith, K. A. 1994 Effect of land use on the rate of uptake of methane by surface soils in northern Europe. Ann. Geophys. 12 (Suppl. II), 388.
- Duxbury, J. M. & Mosier, A. R. 1993 Status and issues concerning agricultural emissions of greenhouse gases. In Agricultural dimensions of global climate change (ed. H. M. Kaiser & T. E. Drennen), pp. 229–258. Delray Beach, Florida: St Lucie Press.
- Galchenko, V. F., Lein, A. & Ivanov, M. 1989 Biological sinks of methane. In Exchange of trace gases between terrestrial ecosystems and the atmosphere (ed. M. O. Andreae & D. S. Schimel), pp. 59–71. Wiley.
- Goulding, K. W. T. 1990 Nitrogen deposition to land from the atmosphere. Soil Use Manage. 6, 61–63.
- Hargreaves, K. J., Fowler, D., Skiba, U. & Milne, R. 1994 Eddy covariance measurements of trace gas fluxes in northern Europe by tuneable diode laser spectroscopy. Ann. Geophys. 12 (Suppl. II), 389.
- Harriss, R. C., Sebacher, D. I. & Day, F. P. 1982 Methane flux in the Great Dismal Swamp. Nature, Lond. 297, 673–674.
- Hütsch, B. W., Webster, C. P. & Powlson, D. S. 1993 Long-term effects of nitrogen fertilization on methane oxidation in soil of the Broadbalk Wheat Experiment. Soil Biol. Biochem. 25, 1307–1315.
- Hütsch, B. W., Webster, C. P. & Powlson, D. S. 1994 Methane oxidation in soil as affected by land use, soil pH and nitrogen fertilization. Soil Biol. Biochem. 26, 1613–1622.
- Jenkinson, D. S. & Powlson, D. S. 1976 The effects of biocidal treatments on metabolism in soil. V. A method for measuring soil biomass. Soil Biol. Biochem. 8, 209–213.
- Meiklejohn, J. 1969 Microbiology of Broadbalk soils. Rothamsted Experimental Station Report for 1968, Part 2, pp. 175–185.
- Melillo, J. M., Steudler, P. A., Aber, J. D. & Bowden, R. D. 1989 Atmospheric deposition and nutrient cycling. In Exchange of trace gases between terrestrial ecosystems and the atmosphere (ed. M. O. Andreae & D. S. Schimel), pp. 263–280. Wiley.
- Mosier, A. R. 1989 Chamber and isotope techniques. In *Exchange of trace gases between ter*restrial ecosystems and the atmosphere (ed. M. O. Andreae & D. S. Schimel), pp. 175–187. Wiley.
- Mosier, A. R. & Schimel, D. S. 1991 Influence of agricultural nitrogen on atmospheric methane and nitrous oxide. *Chem. Ind.* 23, 874–877.

K. W. T. Goulding and others

- Mosier, A. R., Schimel, D. S., Valentine, D., Bronson, K. & Parton, W. 1991 Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. *Nature, Lond.* **350**, 330–332.
- Nesbit, S. P. & Breitenbeck, G. A. 1992 A laboratory study of factors influencing methane uptake by soils. Agric. Ecosys. Env. 41, 39–54.
- Ojima, D. S., Valentine, D. W., Mosier, A. R., Parton, W. J. & Schimel, D. S. 1993 Effect of land use change on methane oxidation in temperate forest and grassland soils. *Chemosphere* 26, 675–685.
- Prieme, A. 1994 Methane oxidation in a Danish spruce forest and its relationship to inorganic nitrogen. Ann. Geophys. 12 (Suppl. II), 391.
- Seiler, W., Conrad, R. & Scharffe, D. 1984 Field studies of methane emission from termite nests into the atmosphere and measurements of methane uptake by tropical soils. J. atmos. Chem. 1, 171–186.
- Steudler, P. A., Bowden, R. D., Melillo, J. M. & Aber, J. D. 1989 Influence of nitrogen fertilization on methane uptake in temperate forest soils. *Nature, Lond.* **341**, 314–316.
- Striegl, R. G., McConnaughey, T. A., Thorstenson, D. C., Weeks, E. P. & Woodward, J. C. 1992 Consumption of atmospheric methane by desert soils. *Nature, Lond.* 357, 145–147.
- WMO/UNEP 1990 Scientific assessment of climate change. Geneva: Intergovernment Panel on Climate Change.
- Yavitt, J. B., Downey, D. M., Lancaster, E. & Lang, G. E. 1990 Methane consumption in decomposing Sphagnum-derived peat. Soil Biol. Biochem. 22, 441–447.
- Yavitt, J. B., Simmons, J. A. & Fahey, J. J. 1993 Methane flux in a northern hardwood forest ecosystem in relation to acid precipitation. *Chemosphere* 26, 721–730.

Discussion

R. S. CLYMO (School of Biological Sciences, QMC, London, U.K.). In the experiment comparing autoclaved with non-autoclaved soil, no uptake of CH_4 by the autoclaved soil was observed. I find this surprising. Should not a small amount, perhaps 5–10%, of the CH_4 have diffused into the pore space of the autoclaved soil core?

K. W. T. GOULDING. We think that there may well have been some diffusion of CH_4 into the pore space of the autoclaved soil. However, after the CH_4 was introduced into the jars they were allowed to stand for 15 min to permit complete equilibration of the added CH_4 (Hürsch *et al.* 1993). Thus t_0 was not 0 but 15 min. The soil moisture content of the cores was 16–17% w/w, and so the soil was sufficiently permeable for the CH_4 to diffuse rapidly and unmeasured during this time. This would not have affected subsequent measurements of the rate of any uptake and oxidation of CH_4 by the organisms in the soil.

K. A. SMITH (Soil Science Department, SAC, Edinburgh, U.K.). The effect of land use change from natural forest to agricultural land may be greater than the effect of fertilizer addition, in reducing the soil sink for methane, judging by recent results obtained in Edinburgh and Copenhagen.

The rate of land use change, and the rate of change of fertilizer use is, surely, too slow to account for the sudden levelling off of the rate of increase of the concentration of methane in the atmosphere.

M. G. R. CANNELL (*Institute of Terrestrial Ecology, Edinburgh, U.K.*). Are changes in land use and management playing a significant role in the current slowing in the rate of increase in atmospheric methane concentrations?

K. W. T. GOULDING. Our results agree with Dr Smith's observations. Con-

version from unfertilized woodland to unfertilized arable land caused a greater reduction in the rate of CH_4 consumption than was caused by applying nitrogen fertilizer to the arable land. However, we must not forget that agriculture is an essential industry. For agricultural land, our data show the major reduction in the rate of CH_4 uptake to be associated with ammonium-fertilized and grazed agricultural land, not with cut or unfertilized grass or with organically manured land. We would also add that changes in land use have been occurring throughout the world for thousands of years. In the developed world, major changes in land use - e.g. from forest to agriculture - were made at least several centuries ago. These cannot account for the recent increases in atmospheric CH_4 . However, the past 50 years have seen significant increases in the area of arable land through the ploughing of permanent grassland and an intensification of agriculture, particularly the greatly increased use of fertilizers and large increases in stocking density of grazing anaimals. We cannot quantify the contribution that these changes would have made to CH_4 uptake by land, and thus to the increase in CH_4 in the atmosphere, but they must have been significant.

Regarding the recent decrease in the rate of increase of atmospheric CH_4 concentrations, we agree that changes in the use of land and the application of fertilizers and manures are unlikely to have been the cause. Rumours of repairs to leaking natural gas pipelines in the former Soviet Union, and the industrial recession generally, may be a more likely cause.

AATHEMATICAL, HYSICAL ENGINEERING

THE ROYAL SOCIETY